
Scalable I/O Forwarding Framework for High-Performance Computing Systems

Nawab Ali,∗ Philip Carns,† Kamil Iskra,† Dries Kimpe,‡ Samuel Lang,† Robert Latham,† Robert Ross,†

Lee Ward,§ P. Sadayappan∗
∗The Ohio State University, Columbus, Ohio 43210

Email: {alin, saday}@cse.ohio-state.edu
†Argonne National Laboratory, Argonne, Illinois 60439
Email: {carns, iskra, slang, robl, rross}@mcs.anl.gov
‡The University of Chicago, Chicago, Illinois 60637

Email: dkimpe@mcs.anl.gov
§Sandia National Laboratories, Albuquerque, New Mexico 87185

Email: lee@sandia.gov

Abstract—Current leadership-class machines suffer from a
significant imbalance between their computational power and
their I/O bandwidth. While Moore’s law ensures that the
computational power of high-performance computing systems
increases with every generation, the same is not true for their
I/O subsystems. The scalability challenges faced by existing
parallel file systems with respect to the increasing number of
clients, coupled with the minimalistic compute node kernels
running on these machines, call for a new I/O paradigm to meet
the requirements of data-intensive scientific applications. I/O
forwarding is a technique that attempts to bridge the increasing
performance and scalability gap between the compute and I/O
components of leadership-class machines by shipping I/O calls
from compute nodes to dedicated I/O nodes. The I/O nodes
perform operations on behalf of the compute nodes and can
reduce file system traffic by aggregating, rescheduling, and
caching I/O requests. This paper presents an open, scalable
I/O forwarding framework for high-performance computing
systems. We describe an I/O protocol and API for shipping
function calls from compute nodes to I/O nodes, and we present
a quantitative analysis of the overhead associated with I/O
forwarding.

Keywords-I/O forwarding; Parallel file systems; Leadership-
class machines

I. INTRODUCTION

Current leadership-class machines such as the IBM Blue
Gene/P supercomputer at the Argonne National Labora-
tory [1] and the Cray XT system at the Oak Ridge National
Laboratory [2] consist of a few hundred thousand process-
ing elements. Future generations of supercomputers will
incorporate millions of processing elements. This significant
increase in scale is brought about not only by an increase in
the number of nodes, but also by new multicore architectures
that can accommodate an increasing number of processing
cores on a single chip.

While the computational power of supercomputers keeps
increasing with every generation, the same is not true for

This work was supported by the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

their I/O subsystems. The data access rates of storage
devices have not kept pace with the exponential growth in
microprocessor performance, meaning that an increasingly
large number of I/O devices are needed to provide corre-
sponding I/O rates. This situation has adversely affected
the I/O bandwidth-to-flops (floating-point operations per
second) ratio of these systems. While the I/O bandwidth
of earlier supercomputers was around 1 GBps for every
teraflop [3], [4], the I/O bandwidth-to-flops ratio of current
leadership-class machines is around 1 GBps for 10 ter-
aflops [1]. I/O is a bottleneck for an increasing number of
applications, and it has the potential of critically impacting
application performance on the next generation of supercom-
puters.

Figure 1: Typical I/O software stack on HPC systems.

Given the limitations imposed by current storage hardware
technology, the main challenge facing I/O researchers is to
drive the existing I/O infrastructure at maximum efficiency
while simultaneously scaling to a larger number of process-
ing elements. Figure 1 shows the I/O software stack available
on a typical high-performance computing (HPC) system. It
consists of serial and parallel high-level I/O libraries, MPI-
IO and POSIX I/O implementations, parallel file systems,
and the storage infrastructure. An important question that
needs to be answered is, where in the software stack do we
make improvements so as to have the greatest impact on
application performance?

Parallel file systems are an obvious potential target for im-
provements. The file systems available on current leadership-
class machines, such as PVFS [5], GPFS [6], Lustre [7],
and PanFS [8] were designed with smaller systems in mind.
They face significant challenges scaling to the hundreds
of thousands of clients that are available on current high-
performance computing systems [9], [10], [11]. Moreover,
since not all HPC systems use the same parallel file system,
attempting to address this challenge at the file system layer
might prove ineffective.

Another option is to make the scalability improvements
at the MPI-IO layer. ROMIO [12], from Argonne National
Laboratory, is the de facto standard MPI-IO implementation.
Since it is distributed as part of both OpenMPI and MPICH2
libraries, it is available on most HPC systems. However, not
all applications use the MPI-IO interface for I/O, so any
improvements made at the MPI-IO layer may not be visible
to the entire spectrum of scientific applications. Similarly,
parallel high-level libraries such as Parallel NetCDF [13]
are not used widely enough to have adequate impact. POSIX
implementations and serial high-level libraries are an artifact
from an earlier generation and are available on current HPC
systems only to support legacy applications.

Figure 2: I/O software stack with I/O forwarding.

Some HPC systems run a minimalistic operating system
kernel on the compute nodes to limit the operating system
“noise”. The IBM Blue Gene series of supercomputers goes
even further, restricting I/O operations from the compute
nodes. To enable applications to perform I/O, the compute
node kernel ships all I/O operations to a dedicated I/O node,
which performs I/O on behalf of the compute nodes. This
concept, known as I/O forwarding, is explained in detail in
Section II. As shown in Figure 2, I/O forwarding introduces
a new layer in the I/O software stack. By interposing
software above the file system layer but below the rest
of the I/O software stack, the I/O forwarding framework
provides a compelling point for I/O optimizations. It is
transparent to applications and high-level I/O libraries, and
any optimization performed at the I/O forwarding layer is
visible across all parallel file systems.

In view of the importance of I/O forwarding in HPC
systems, it is desirable to have a high-quality implementation
capable of supporting multiple architectures, file systems,
and high-speed interconnects. While a few I/O forwarding
solutions are available for the IBM Blue Gene platform, they
are tightly coupled to that architecture [14], [4].

In this paper we present a scalable I/O forwarding frame-
work (IOFSL) for high-performance computing systems. We
describe a new protocol and API (ZOIDFS) for forwarding
I/O function calls from the compute nodes to the I/O node,
and we quantify the overheads associated with introducing
the I/O forwarding layer in the I/O stack.

The rest of the paper is organized as follows. Section II
describes I/O forwarding. Section III presents our scalable
I/O forwarding framework. We describe the components of
the IOFSL software stack in Section IV. Section V discusses
the experimental results. We summarize the prior research
in I/O forwarding in Section VI and present our conclusions
and future work in Section VII.

II. I/O FORWARDING

General-purpose operating systems such as Linux are de-
signed for a multiuser and multiprogramming environment.
They employ mechanisms such as multitasking, process
preemption, and context switching to ensure a low response
time for applications. While these mechanisms fulfill the
requirements of desktop and server environments, they also
introduce significant levels of noise in the system in the form
of context switches, cache poisoning, translation lookaside
buffer misses, and interrupts. Operating system noise can
adversely impact the performance of HPC applications,
particularly with respect to synchronicity [15], [16].

An important component of a scalable system is system
software with low noise. A number of efforts have addressed
the issue of system noise by deploying lightweight ker-
nels [17], [18] and through tuning of the Linux kernel [19].
File system software can be a significant contributor to
system noise. File systems that cache locks or dirty data can
initiate asynchronous communication that can significantly
skew application synchronicity. Removing these file system
components from the compute nodes eliminates one source
of noise.

In order to mitigate the levels of noise in OS kernels,
massively parallel machines such as the IBM Blue Gene/P
run customized, stripped-down versions of the OS kernels
on the compute nodes. The Blue Gene/P compute node
kernel (CNK) is a lightweight kernel that minimizes OS
interference by disabling support for multiprocessing and
POSIX I/O system calls [20].

There are several ways to provide I/O support on the Blue
Gene/P. Applications can use a user-level file system based
on FUSE [21] or the SYSIO library [22] to perform file I/O.
The SYSIO library provides POSIX-like file I/O support for
remote file systems in userspace. Another approach used by

the Blue Gene architecture is to forward all I/O requests
from the compute nodes to dedicated I/O nodes. The I/O
nodes run a fully functional OS kernel and perform I/O
on behalf of the compute nodes. This technique, known as
I/O forwarding, enables applications running on the compute
nodes to perform I/O without introducing I/O-specific noise
in the CNK.

Figure 3 shows the I/O forwarding infrastructure on the
IBM Blue Gene/P. Compute nodes are partitioned into
subsets that map to an I/O node. The ratio of I/O nodes to
compute nodes varies from 1:8 to 1:64. The compute nodes
are connected to the I/O nodes via a collective tree network.
The I/O nodes are connected to the file system via a 10 GigE
network. The CNK forwards all I/O and socket requests to
the I/O node. A dedicated control and I/O daemon running
on the I/O node performs I/O on behalf of the compute nodes
by invoking the corresponding file system calls.

Figure 3: I/O forwarding architecture for IBM BG/P.

Most current file systems track all active clients. While
this was not a significant issue with hundreds or even
thousands of clients, today’s largest systems consist of hun-
dreds of thousands of processing elements, and the overhead
of this tracking places enormous burdens on file systems.
However, by partitioning the compute nodes into M subsets,
each containing N compute nodes, and by forwarding the
I/O requests from each subset to a dedicated I/O node,
we can reduce by a factor of N the apparent number
of clients accessing the file system. I/O forwarding can
potentially reduce the file system traffic by aggregating,
rescheduling, and caching the I/O requests at the I/O nodes.
These optimizations are relevant even for architectures that
provide connectivity between compute nodes and file system
servers, such as the Cray XT and Linux clusters.

I/O forwarding also allows the compute nodes to bridge
the multiple physical networks available on the Blue Gene/P.
Since the compute nodes are not directly connected to the
file servers, they ship their I/O requests over the collective
tree network to the I/O nodes, thus circumventing the lack
of direct connectivity to the file system.

Unfortunately, there are some significant drawbacks asso-
ciated with the Blue Gene/P I/O forwarding implementation.

The CNK supports only a subset of the POSIX I/O and BSD
socket API. Applications using MPI-IO need to translate the
MPI-IO calls to POSIX I/O, which eliminates the possible
use of file system specific optimizations performed at the
MPI-IO layer. Also, the BG/P I/O forwarding infrastructure
is tightly coupled to IBM technologies.

III. SCALABLE I/O FORWARDING FRAMEWORK

In view of the importance of I/O forwarding in the I/O
stack of leadership-class machines and the lack of a portable,
open-source implementation, we propose a scalable, unified
I/O forwarding framework for high-performance computing
systems. In particular, this layer will perform the following
functions:
• Provide function shipping at the file system interface

level that enables asynchronous coalescing and I/O
without jeopardizing determinism for computation

• Offload file system functions from simple or full OS
client processes to multiple targets, including another
core or hardware on the same system, an I/O node on a
conventional cluster, or a service node on a leadership-
class system

• Reduce the number of file system operations or clients
that are visible to the file system

• Support multiple parallel file systems
• Support multiple high-speed interconnects and network-

ing solutions
• Integrate with MPI-IO and any hardware features de-

signed to support efficient parallel I/O
Our I/O forwarding framework leverages previous work

from the ZOID project at Argonne National Laboratory [4].
In particular, we use the ZOIDFS I/O protocol and API
as a starting point for our research. Figure 4 shows the
IOFSL software stack. It consists of two main components:
a ZOIDFS client library running on the compute nodes and
an I/O forwarding daemon (IOD) running on I/O nodes.
The ZOIDFS client library forwards I/O requests from
the compute node kernel to the IOD. The IOD performs
file I/O on behalf of the compute nodes by executing the
corresponding file system calls.

One of the design requirements of the I/O forwarding
framework was portability. We did not want to make any
assumptions about operating system kernels, high-speed
interconnects, file systems, or machine architectures that the
framework would operate on. In view of the above design
requirement, we have introduced abstractions at the client,
network, and file system layers.

We encode the function parameters using XDR [23] to ac-
count for possible heterogeneity between the compute node
and I/O node architectures. Similarly, through the abstraction
provided by the SYSIO library, we can potentially support
multiple file systems on the I/O nodes, including PVFS,
Lustre, UFS, and PanFS. We use BMI [24] to provide our
network abstraction, allowing us to operate over several

high-speed interconnects such as InfiniBand, Myrinet, and
Gigabit Ethernet. Section IV discusses these components in
greater detail.

Figure 4: I/O forwarding software stack.

IV. I/O FORWARDING SOFTWARE STACK

This section describes the individual components of the
IOFSL software stack. We explain our design choices and
discuss the tradeoffs.

A. ZOIDFS I/O Protocol

The POSIX file I/O protocol inhibits the performance of
file systems in the HPC domain [25], [11]. To avoid the
associated performance overhead, stateless file systems such
as PVFS relax certain POSIX consistency semantics [26].
Also, the POSIX API is not expressive enough to concisely
describe I/O patterns, such as noncontiguous file access,
that are often present in high-performance computing ap-
plications. POSIX requires extensions to enable efficient
noncontiguous I/O.

To overcome the limitations of POSIX file I/O, we have
defined a new I/O protocol, called ZOIDFS, that is suitable
for the I/O forwarding framework. ZOIDFS is a stateless
protocol. Instead of file descriptors, it uses opaque file
handles to describe the objects on which I/O operations will
be performed. Since the protocol does not maintain any state
at the client or the server end, these handles can be freely
exchanged among the compute nodes.

The ZOIDFS API is more expressive than POSIX and
requires fewer I/O calls for file operations. For instance,
ZOIDFS has no file open or close calls. Instead, applications
perform a file lookup to obtain the file handle, and all
subsequent operations use the file handle to perform I/O.
The ZOIDFS I/O calls can operate on multiple memory
buffers and regions of the file using a single call. This ap-
proach allows applications with noncontiguous I/O patterns
to effectively perform I/O without the overhead of invoking
multiple read and write calls.

int zoidfs_lookup(const zoidfs_handle_t *parent_handle,
const char *component_name,
const char *full_path,
zoidfs_handle_t *handle);

int zoidfs_write(const zoidfs_handle_t *handle,
size_t mem_count,
const void *mem_starts[],
const size_t mem_sizes[],
size_t file_count,
const uint64_t file_starts[],
uint64_t file_sizes[]);

While the ZOIDFS API is feature complete and stable,
we have identified the need to pass hints along with the API
function calls, to provide contextual information helpful for
optimizations or debugging. Potential parameters that can
be passed as hints include node id, process id, operation
id, and user credentials. For instance, the operation id
can identify individual suboperations coming from multiple
compute processes that form a larger collective operation.
This information can be helpful to a separate caching layer
running on the I/O forwarding nodes. We are currently
exploring extensions to the ZOIDFS API to include the hints
parameter.

The stateless nature of the ZOIDFS protocol introduces
important security challenges. The typical approach to secu-
rity in a system like this would be to track clients from
open to close and associate credentials with the tracked
connection. Tracking potentially hundreds of thousands of
clients is exactly the sort of problem we are hoping to
avoid with our solution. Instead of tracking individual client
processes, we note that processes are merely part of a larger
application executing as some user. We plan to pass creden-
tials with client requests and to incorporate capabilities into
file handles in a way that preserves well-understood security
models but allows for significant reduction in operations and
security-related traffic.

B. ZOIDFS Client Interface

The ZOIDFS API is intended to be used within
ROMIO [12] for MPI-IO [27] and under FUSE [21],
SYSIO [22], or glibc wrappers for POSIX. The ROMIO
driver for ZOIDFS enables parallel applications to perform
I/O call forwarding via MPI-IO. It converts MPI file views
and datatypes into offset-list pairs that can be serviced with
a single, noncontiguous ZOIDFS operation. We can utilize
other ROMIO optimizations as well, such as two-phase
collective I/O and data sieving (for reads only, as writes
would require locking).

The ROMIO support on the Blue Gene/P system further
illustrates the limitations of POSIX in high-performance
computing environments. Whereas ZOIDFS can describe
noncontiguous I/O in a single function call, POSIX-based
ROMIO drivers have to take less efficient approaches, such
as data sieving [28]. Moreover, the ZOIDFS driver can

implement scalable file metadata operations such as create,
open, resize, and sync. One client process executes the
metadata operation and then broadcasts the results to the
other clients [29]. On the Blue Gene/P, all processes in
the communicator invoke the metadata system calls, thus
resulting in increased file system traffic.

C. Buffered Message Interface

Buffered Message Interface (BMI) is a network abstrac-
tion layer designed for high-performance parallel I/O [24].
BMI enables parallel file systems to operate on multiple
interconnection networks such as TCP/IP, InfiniBand, and
Myrinet. While message-passing architectures such as Por-
tals [30] and MPI [31] also provide network abstractions,
BMI has inherent support for parallel I/O communication
patterns. For instance, the BMI list operations allow appli-
cations to send or receive a set of noncontiguous buffers in
a single function call.

BMI exports two sets of APIs: a user-level API and an
internal device API. The user-level API is used by higher-
level services such as file systems, whereas the device API
is used for specific network implementations. The dual-
layered architecture enables BMI to abstract the details of
the network from applications while exploiting the high-
performance capabilities of modern interconnects. The BMI
API is also asynchronous, thread-safe, and stateless. File
systems can post and test for multiple I/O operations across
several different networks simultaneously. This forms a
basis for a portable, scalable, and concurrent communication
paradigm.

BMI provides exactly the functionality that we need for
the I/O forwarding framework. BMI was developed as part
of the PVFS project, and until now the implementation
was distributed only with PVFS. We have removed the
dependencies on PVFS so that BMI can exist as a standalone
package.

D. ZOIDFS File System Interface

The ZOIDFS server is a daemon that runs on I/O nodes. It
receives encoded I/O requests from compute nodes, decodes
the requests, and performs I/O on behalf of the compute
nodes. The current implementation uses a pool of threads to
concurrently service requests from multiple clients.

Once the ZOIDFS server has received and decoded the I/O
requests from the compute nodes, it invokes the correspond-
ing file system driver via an I/O dispatcher. The dispatcher
identifies file systems based on the ZOIDFS handle and calls
the corresponding driver code. We have developed ZOIDFS
drivers for PVFS and POSIX-compliant file systems.

It is fairly straightforward to map a stateless, handle-based
file system API such as PVFS to the ZOIDFS protocol.
The 8-byte PVFS handle can be incorporated in the 32-byte
ZOIDFS handle, resulting in a one-to-one mapping between
the ZOIDFS and PVFS API. However, mapping the stateless

ZOIDFS I/O protocol with stateful POSIX-compliant file
systems introduces significant challenges.

E. ZOIDFS on POSIX

Since POSIX is the only accessible client API for most
file systems, we must find an efficient mapping between the
ZOIDFS and POSIX APIs. Two issues complicate imple-
menting the ZOIDFS API on top of a POSIX file system.
First, since the ZOIDFS API does not require a client to
indicate when it has finished using a file handle (i.e., a
close operation), some form of garbage collection has to
be implemented to free the resources associated with every
open POSIX handle. Also, most operating systems limit the
number of files an application can have open simultaneously.

The second issue arises when a client reuses a file handle.
Since the mapping between a file and its associated ZOIDFS
handle is immutable, an application can reuse a handle with-
out first performing a lookup. When this situation occurs, the
ZOIDFS POSIX driver needs to obtain a POSIX file handle
for a given ZOIDFS handle. The problem is that, while most
file systems internally employ an identifier similar to file
handles to uniquely identify a file (for example, inodes),
POSIX does not require them to expose this identifier to the
user. Hence, using the POSIX interface, one can obtain a file
handle only by specifying the full filename. In other words,
the ZOIDFS POSIX driver needs to perform a “reverse
lookup” (mapping a ZOIDFS handle back onto a filename)
to reopen the file.

A persistent mapping between ZOIDFS handles and file-
names can be maintained in two ways. In the first method,
reverse lookups are implemented by using a database that
stores 〈handle, filename〉 tuples. For each lookup, this
database is consulted. If the filename is already present, its
handle is returned. Otherwise, a unique ZOIDFS handle is
generated, and the filename and handle are added to the
database.

Unfortunately, this approach introduces a number of prob-
lems. For one, the size of the database is bounded by the
number of files on the file system. Each file accessed through
the ZOIDFS API will require an entry in the database, and
– since handles are persistent – entries can be removed only
when the file itself is removed. Hence, the database cannot
be kept in memory.

In addition, to ensure the scalability of opening files in a
parallel application, the ZOIDFS API explicitly allows for
performing a single lookup on one process and broadcasting
the resulting handle to other processes. Hence, the filename
database needs to be shared by all processes using the
ZOIDFS API. Although the fact that handles are immutable
enables aggressive per process caching, using a shared
database does not offer a scalable solution.

The other option is to move the responsibility of providing
the full filename to the application. This approach eliminates
the disadvantages of maintaining a handle database. We have

 0

 0.5

 1

 1.5

 2

 2.5

create mkdir remove

La
te

nc
y

(m
s)

IOFSL
PVFS

 0

 0.2

 0.4

 0.6

 0.8

 1

setattr getattr lookup

La
te

nc
y

(m
s)

IOFSL
PVFS

Figure 5: Metadata operations latency. Left: create, mkdir, remove; right: setattr, getattr, lookup.

added a new error code, ESTALE, to the ZOIDFS API. If
the ZOIDFS layer needs to obtain the filename associated
with a ZOIDFS handle and is unable to do so (for example,
because the underlying file system does not support it), it
will return ESTALE. This indicates to the user application
that it needs to perform a lookup operation on the file, thus
re-establishing the 〈handle, filename〉 mapping.

Our current implementation of the ZOIDFS POSIX driver
uses a least-recently-used policy to limit the number of
concurrent POSIX file handles. In addition, the driver can be
configured to use a local, global, or memory-only database
to keep track of ZOIDFS handles.

V. EXPERIMENTS

In this section we evaluate the performance of the I/O
forwarding framework. We present results from metadata
microbenchmarks, I/O benchmarks, and an application. We
have used PVFS as the underlying file system in our
experiments.

We note the functional differences between IOFSL, which
is an I/O forwarding framework, and PVFS, which is a
parallel file system. An I/O forwarding framework initiates
parallel file system operations. IOFSL encodes the function
parameters at the compute nodes, sends the encoded param-
eters to the I/O node, decodes the function parameters at
the I/O node, and then hands off the I/O operations to the
file system. As such, in small-scale testing environments,
IOFSL will always perform slower than direct access to the
parallel file system. The potential benefits of I/O forward-
ing are realized primarily in large-scale, massively parallel
computing environments where significant aggregation is
possible. However, comparing the I/O forwarding framework
to a parallel file system enables us to quantify the overhead
associated with forwarding I/O system calls from the com-
pute nodes to the I/O node.

The experiments were conducted on a Linux cluster. Each
cluster node consists of dual AMD Opteron 250 processors,
2 GB of RAM, an onboard Tigon 3 Gigabit Ethernet NIC,
and an 80 GB SATA disk. The nodes are connected via
an SMC 8648T 48-port switch. The testbed consisted of a

single PVFS server running a development version of pvfs-
2.8.1, an I/O forwarding server, and compute node clients,
all running on separate nodes. We bypassed the libsysio layer
to access the PVFS file system directly, by using a PVFS
driver for the ZOIDFS API.

A. Latency Microbenchmarks

The first set of experiments measured the latency of
some common metadata operations. Figure 5 shows the time
taken by a single client to create and remove files, create
directories, perform file lookups, and set and retrieve file
attributes.

The IOFSL metadata latency is 0.2 ms to 0.3 ms more
than that of PVFS for all metadata operations. This repre-
sents the fixed cost associated with encoding the function
parameters at the compute node, network communication
overhead, and decoding the parameters at the I/O node. It
takes only about 0.30 µs to encode and decode a typical
ZOIDFS data structure (zoidfs_attr_t). Thus, most of
the overhead associated with I/O forwarding is a result
of the communication costs between the compute and the
I/O nodes. While this fixed cost is barely noticeable when
we create and remove files and directories, it has a higher
relative impact on operations with low latencies, such as file
lookups and setting and retrieving of file attributes. However,
this additional cost can be offset by aggregating metadata
operations at the I/O node.

B. ROMIO Perf

The ROMIO perf benchmark is an MPI-IO application
that measures the I/O bandwidth of file systems. Each
process writes a data array to a fixed location in a shared file
using noncollective I/O and individual file pointers. The data
is then read back to calculate the aggregate I/O bandwidth.
ROMIO perf reports two sets of I/O bandwidth results: with
and without data being flushed to the disk.

Figure 6 shows the aggregate I/O bandwidth of IOFSL
and PVFS as a function of the number of clients. The read
and write curves plateau almost immediately, signifying that
only a few clients are needed to saturate the network. The

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

Figure 6: ROMIO perf. Left: IOFSL/PVFS; right: direct PVFS.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

Write
Read
Write+Flush

Figure 7: ROMIO perf. Left: IOFSL/PVFS; right: direct PVFS. The file system is mounted on a ramdisk.

IOFSL I/O bandwidth is lower than that of PVFS because
of the costs associated with encoding and decoding the
function parameters, communication overhead, and lack of
I/O pipelining between the compute nodes and I/O nodes.
The average IOFSL read bandwidth is about 40% less than
that of PVFS, while the average write bandwidth is about
16% less than that of PVFS. The write bandwidth with
flushing enabled reflects the limit of the single SATA disk
used in this experiment.

To study the benchmark without the limitations imposed
by the disk throughput, we ran the experiment again after
mounting the PVFS file system on a ramdisk. Figure 7 shows
the new aggregate I/O bandwidth results. In the case of direct
PVFS, the read bandwidth is again bound by the network.
For both IOFSL and direct PVFS, the write bandwidth is
comparable to the case where the file system is mounted
on the disk, signifying that the ROMIO perf data is small
enough to be cached in memory. Also, flushing the data
after the write operation does not adversely affect the write
bandwidth, as this operation is no longer limited by the disk
throughput.

C. NAS BTIO

The BT benchmark is part of the NAS Parallel Bench-
marks suite of applications. It solves systems of block-
tridiagonal equations in parallel. BTIO [32] extends the

BT benchmark by adding support for periodic solution
checkpointing using noncontiguous MPI-IO calls. We used
the Class C full version of BTIO, which uses collective
I/O to generate large, regular I/O requests. BTIO requires
that the number of clients be squares of integers. The Class
C version of the benchmark is data-intensive, reading and
writing almost 7 GB of data.

Figure 8 (left) measures the BTIO Class C I/O bandwidth
as a function of the number of clients. The BTIO write
bandwidth plateaus at about 20 MBps for both IOFSL and
PVFS. This is primarily a limitation of the disk bandwidth of
the single SATA disk used in all the experiments. The read
bandwidth plateaus at about 35 MBps for PVFS and at about
30 MBps for IOFSL because of the limited available disk
bandwidth. The difference between the PVFS and IOFSL
read throughput can be attributed to the additional store-
and-forward latency associated with moving the data from
the compute nodes to the I/O node in the case of IOFSL.

The I/O bandwidth reported by ROMIO perf (Figure 6)
is more than that of NAS BTIO for both IOFSL and direct
PVFS. This result can be explained by the amount of data
read and written by these benchmarks. Each perf client reads
and writes 8 MB of data, which is small enough to be cached
in memory. The BTIO Class C benchmark reads and writes
almost 7 GB of data. Since this data is too large to be
cached in memory, the BTIO I/O bandwidth is limited by the

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

A
gg

re
ga

te
 I/

O
 B

an
dw

id
th

 (M
B

/s
)

Number of Clients

IOFSL Write
IOFSL Read
PVFS Write
PVFS Read

 0

 0.5

 1

 1.5

 2

test0 test1 test7GB

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

SSCA-3 Predefined Tests

IOFSL
PVFS

Figure 8: BTIO and SSCA-3 performance. Left: BTIO Class C I/O bandwidth; right: SSCA-3 normalized execution time.

disk bandwidth. We note that in the case of perf, the write
bandwidth is the same as BTIO when the data is flushed to
the disk after each write operation.

D. Scalable Synthetic Compact Application

Scalable Synthetic Compact Application (SSCA) [33]
is a set of high-performance computing benchmarks that
model scientific applications such as bioinformatics optimal
pattern matching, graph analysis, SAR sensor processing,
and knowledge formation. We used the I/O-only version of
the SSCA-3 code for these experiments.

We made two modifications to the SSCA-3 code. First,
we replaced the POSIX file I/O system calls with MPI-IO
calls. This enables us to measure the PVFS I/O performance
without the overhead associated with tunneling I/O requests
through the PVFS kernel module. The second modification
involved removing a behavior in the SSCA-3 code wherein
the application would break the I/O operations into 4-byte
chunks; i.e., while the application generates large read and
write requests, a subroutine breaks the requests into smaller
chunks. SSCA-3 is a serial application and uses a single
client.

Figure 8 (right) shows the normalized execution time of
the SSCA-3 application for the three predefined test runs:
test0, test1, and test7GB. The I/O and metadata footprint
of the application progressively increases as we move from
test0 to test7GB. Table I lists the I/O and metadata informa-
tion for the SSCA-3 benchmark.

Table I: SSCA-3 I/O and metadata footprint.

TEST FILES READ WRITE TOTAL

test0 498 0.35 GB 0.17 GB 0.52 GB
test1 2,910 2.17 GB 1.03 GB 3.20 GB
test7GB 92,634 18.90 GB 7.19 GB 26.09 GB

The SSCA-3 execution time for IOFSL is 21%–26% more
than that of PVFS. This overhead is predominantly due to the
additional store-and-forward latency associated with moving

file data from the compute nodes to the I/O node. However,
by aggregating I/O and metadata operations at the I/O node,
we can improve IOFSL performance by reducing the file
system traffic. We will address this issue in future work.

VI. RELATED WORK

Remote Procedure Call (RPC) is a communication mech-
anism that enables applications to execute the called pro-
cedure on a different host machine [34]. RPCs encode the
function parameters that are then passed over the network
to a remote server. The server executes the function call on
behalf of the client and sends the results back to the client.
I/O forwarding is essentially a specialized form of RPC,
where the I/O function calls are sent to the I/O node for
execution.

The Computational Plant (Cplant) [35] machine at Sandia
National Laboratories introduced the concept of I/O forward-
ing in HPC systems. The Cplant compute nodes forwarded
the I/O requests to a NFSv2 proxy that performed I/O
on behalf of the compute nodes. Some of the limitations
of the Cplant I/O forwarding infrastructure include lack
of data caching and I/O aggregation, limited support for
multithreading, and the absence of locking.

The IBM Blue Gene series of supercomputers use I/O
forwarding to ship I/O operations from compute nodes to
dedicated I/O nodes [14]. The Blue Gene compute nodes and
I/O nodes are organized into multiple processing sets (psets).
Each pset consists of a single I/O node and a fixed number
of compute nodes. I/O operations from the compute nodes
are shipped to the corresponding I/O node over a collective
network. A dedicated control daemon running on the I/O
node performs I/O on behalf of the compute nodes.

A related research project at Argonne National Laboratory
seeks to mitigate some of the design limitations of the
Blue Gene I/O forwarding framework [4]. ZOID is an open
and scalable I/O forwarding architecture for the IBM Blue
Gene/P system. It defines a new I/O forwarding protocol for
shipping I/O operations from compute nodes to I/O nodes.
However, the ZOID I/O forwarding architecture is tightly
coupled to the IBM tree network. It was designed for the

Blue Gene series of supercomputers and is not portable to
other HPC systems such as the Cray XT5 or Linux clusters.

VII. CONCLUSIONS

The performance mismatch between the computing and
I/O components of the current generation of HPC systems
has made I/O the critical bottleneck for data-intensive sci-
entific applications. I/O forwarding attempts to bridge this
increasing performance gap by regulating the file system
I/O traffic. In this paper, we present an open, scalable
I/O forwarding framework for high-performance computing
systems. We document the potential benefits of I/O forward-
ing and quantify the overhead associated with introducing
another layer in the I/O stack.

The I/O forwarding layer provides a platform for opti-
mizing the file system I/O traffic. We plan to pipeline the
I/O requests between the compute nodes and I/O nodes and
leverage the knowledge of larger I/O patterns to aggregate
I/O requests and perform data and metadata caching. The
other areas for future work include designing a capability-
based security model for the ZOIDFS protocol and integrat-
ing the SYSIO library with the I/O forwarding stack. We
are also developing a BMI driver for the IBM Blue Gene/P
tree network. This will enable the IOFSL code to run on the
Intrepid system at Argonne National Laboratory.

REFERENCES

[1] “Argonne Leadership Computing Facility,” http://www.
alcf.anl.gov.

[2] “Jaguar,” http://www.nccs.gov/jaguar.
[3] Lawrence Livermore National Laboratory, “ASC Pur-

ple,” https://asc.llnl.gov/computing resources/purple.
[4] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman,

“ZOID: I/O-forwarding infrastructure for petascale ar-
chitectures,” in ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, Salt Lake
City, UT, 2008, pp. 153–162.

[5] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur,
“PVFS: A parallel file system for Linux clusters,” in
Proceedings of the 4th Annual Linux Showcase and
Conference, 2000, pp. 317–327.

[6] F. Schmuck and R. Haskin, “GPFS: A shared-disk file
system for large computing clusters,” in USENIX Con-
ference on File and Storage Technologies, Monterey,
CA, 2002.

[7] “Lustre: A scalable, high-performance file system,”
Cluster File Systems Inc. white paper, Nov. 2002.

[8] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas
ActiveScale storage cluster—delivering scalable high
bandwidth storage,” in ACM/IEEE Conference on Su-
percomputing, Pittsburgh, PA, Nov. 2004.

[9] J. Laros, L. Ward, R. Klundt, S. Kelly, J. Tomkins, and
B. Kellogg, “Red Storm IO Performance Analysis,” in
IEEE International Conference on Cluster Computing,
Austin, TX, Sep. 2007.

[10] W. Yu, J. S. Vetter, and H. S. Oral, “Performance
characterization and optimization of parallel I/O on

the Cray XT,” in IEEE International Parallel and
Distributed Processing Symposium, Apr. 2008.

[11] M. Fahey, J. Larkin, and J. Adams, “I/O performance
on a massively parallel Cray XT3/XT4,” in Interna-
tional Symposium on Parallel and Distributed Process-
ing, Apr. 2008.

[12] Argonne National Laboratory, “ROMIO: A high-
performance, portable MPI-IO implementation,” http:
//www.mcs.anl.gov/romio.

[13] J. Li, W. Liao, A. Choudhary, R. Ross, R. Thakur,
W. Gropp, R. Latham, A. Siegel, B. Gallagher, and
M. Zingale, “Parallel netCDF: A high-performance
scientific I/O interface,” in ACM/IEEE Conference on
Supercomputing, Phoenix, AZ, Nov. 2003.

[14] H. Yu, R. K. Sahoo, C. Howson, G. Almasi, J. G.
Castanos, M. Gupta, J. E. Moreira, J. J. Parker, T. E.
Engelsiepen, R. Ross, R. Thakur, R. Latham, and W. D.
Gropp, “High performance file I/O for the Blue Gene/L
supercomputer,” in International Symposium on High-
Performance Computer Architecture, Feb. 2006.

[15] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan, “Op-
erating system issues for petascale systems,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 2, pp. 29–33, 2006.

[16] P. Beckman, K. Iskra, K. Yoshii, S. Coghlan, and
A. Nataraj, “Benchmarking the effects of operating sys-
tem interference on extreme-scale parallel machines,”
Cluster Computing, vol. 11, no. 1, pp. 3–16, 2008.

[17] S. M. Kelly and R. Brightwell, “Software architecture
of the light weight kernel, Catamount,” in Proceedings
of the 47th Cray User Group Conference, Albuquerque,
NM, May 2005.

[18] J. E. Moreira et al., “Designing a highly-scalable
operating system: The Blue Gene/L story,” in ACM/
IEEE Conference on Supercomputing, Tampa, FL, Nov.
2006.

[19] D. Wallace, “Compute Node Linux: New frontiers in
compute node operating systems,” in Proceedings of
the Cray User’s Group, 2007.

[20] IBM, “Overview of the IBM Blue Gene/P project,”
IBM Journal of Research and Development, vol. 52,
no. 1/2, pp. 199–220, 2008.

[21] “FUSE: Filesystem in userspace,” http:
//fuse.sourceforge.net/.

[22] “SYSIO,” http://sourceforge.net/projects/libsysio.
[23] M. Eisler, “XDR: External data representation stan-

dard,” http://www.ietf.org/rfc/rfc4506.txt.
[24] P. H. Carns, W. B. Ligon III, R. Ross, and P. Wyckoff,

“BMI: A network abstraction layer for parallel I/O,” in
IEEE International Parallel and Distributed Processing
Symposium, Workshop on Communication Architecture
for Clusters, Denver, CO, Apr. 2005.

[25] W. Liao and A. Choudhary, “Dynamically adapting file
domain partitioning methods for collective I/O based
on underlying parallel file system locking protocols,”
in ACM/IEEE Conference on Supercomputing, 2008.

[26] IEEE, 1003.1-1988 INT/1992 Edition, IEEE Standard
Interpretations of IEEE Standard Portable Operating
System Interface for Computer Environments (IEEE Std
1003.1-1988). NY: IEEE, 1988.

[27] R. Thakur, W. Gropp, and E. Lusk, “On implementing
MPI-IO portably and with high performance,” in Pro-
ceedings of the 6th Workshop on I/O in Parallel and
Distributed Systems, Atlanta, GA, 1999, pp. 23–32.

[28] A. Ching, A. Choudhary, K. Coloma, W. K. Liao,
R. Ross, and W. Gropp, “Noncontiguous access
through MPI-IO,” in IEEE/ACM International Sympo-
sium on Cluster Computing and the Grid, May 2003.

[29] R. Latham, R. Ross, and R. Thakur, “The impact of
file systems on MPI-IO scalability,” Lecture Notes in
Computer Science, vol. 3241, pp. 87–96, Sep. 2004.

[30] R. Brightwell, B. Lawry, A. B. MacCabe, and
R. Riesen, “Portals 3.0: Protocol building blocks for
low overhead communication,” in IEEE International

Parallel and Distributed Processing Symposium, 2002.
[31] MPI Forum, “MPI-2: Extensions to the Message-

Passing Interface,” http://www.mpi-forum.org/docs/
docs.html, 1997.

[32] P. Wong and R. der Wijngaart, “NAS parallel bench-
marks I/O version 2.4,” NASA Ames Research Center,
Moffet Field, CA, Tech. Rep. NAS-03-002, Jan. 2003.

[33] HPCS, “Scalable Synthetic Compact Application,”
http://www.highproductivity.org/SSCABmks.htm.

[34] R. Srinivasan, “RPC: Remote procedure call proto-
col specification version 2,” http://www.ietf.org/rfc/
rfc1831.txt.

[35] Sandia National Laboratories, “Computational Plant,”
http://www.cs.sandia.gov/cplant.

